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Alzheimer’s disease (AD) has a slow onset, so it is challenging to distinguish brain changes in healthy elderly persons from incipient AD.
One-year brain changes with a distinct frontotemporal pattern have been shown in older adults. However, it is not clear to what extent
these changes may have been affected by undetected, early AD. To address this, we estimated 1-year atrophy by magnetic resonance
imaging (MRI) in 132 healthy elderly persons who had remained free of diagnosed mild cognitive impairment or AD for at least 3 years.
We found significant volumetric reductions throughout the brain. The sample was further divided into low-risk groups based on clinical,
biomarker, genetic, or cognitive criteria. Although sample sizes varied, significant reductions were observed in all groups, with rates and
topographical distribution of atrophy comparable to that of the full sample. Volume reductions were especially pronounced in the default
mode network, closely matching the previously described frontotemporal pattern of changes in healthy aging. Atrophy in the hippocam-
pus predicted change in memory, with no additional default mode network contributions. In conclusion, reductions in regional brain
volumes can be detected over the course of 1 year even in older adults who are unlikely to be in a presymptomatic stage of AD.

Introduction
Current models of Alzheimer’s disease (AD) posit that brain at-
rophy progresses years before clinical symptoms appear (Jack et

al., 2011; Sperling et al., 2011), and possibly that nerve cell degen-
eration is downstream from earlier causative events, especially
abnormal processing of amyloid-� peptides (Goedert and Spill-
antini, 2006; Jack et al., 2010). This makes it very difficult to
disentangle brain changes in normal aging from the earliest signs
of AD Using data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI, www.adni-info.org), we have shown previously
that significant reductions in regional cortical volumes can be
reliably detected over periods as short as 1 year (Fjell et al., 2009)
or less (Murphy et al., 2010) in healthy elderly persons, and that
thinning of the entorhinal cortex can be found in participants at
low risk for AD (Fjell et al., 2012). However, long-term follow-up
data have been lacking, making it difficult to be certain that the
changes observed were not influenced by presymptomatic AD
pathology. This is an important consideration given the promi-
nent temporal changes that were observed in previous studies
(Fjell et al., 2009), which overlapped in topography with the at-
rophy seen in mild cognitive impairment (MCI) and AD (Jack et
al., 1997; McDonald et al., 2009). With the continuation of
ADNI, additional longer term follow-up data are now available
for participants included in previous studies (Fjell et al., 2009;
2012). In an attempt to disentangle the characteristics of normal
aging from those of presymptomatic AD, we took advantage of
these new data to examine brain changes in those elderly persons
at very low risk of developing AD. We used a combination of 3- to
4-year follow-up examinations with clinical instruments and
neuropsychological memory tests, established CSF biomarkers of
amyloid pathology (Blennow and Hampel, 2003; Strozyk et al.,
2003; Blennow et al., 2006), and the genetic risk factor apolipo-
protein �4 to assign participants to different low-risk groups. We
were able to study longitudinal brain changes in these low-risk
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elderly persons and to be more confident
that any changes observed were not due to
presymptomatic AD.

Materials and Methods
Sample. The principal investigator for ADNI is
Michael W. Weiner (Veterans Administration
Medical Center and University of California–
San Francisco). ADNI eligibility criteria are
described at www.adni-info.org. Briefly, par-
ticipants were 55–91 years of age at baseline,
had an informant able to provide an indepen-
dent evaluation of functioning, and spoke ei-
ther English or Spanish. General inclusion/
exclusion criteria were as follows for normal
subjects: Mini-Mental State Examination
(MMSE; Folstein et al., 1975) scores between
24 and 30 (inclusive), Clinical Dementia Rat-
ing (CDR; Morris, 1993) of 0, nondepressed,
non-MCI, and nondemented. A total of 162
healthy elderly (60 –90 years) persons fulfilling
these criteria and with 1-year longitudinal MRI
passing internal quality control were available
(Holland et al., 2009). Of these, 8 converted to
MCI/AD within 3 years and 22 did not com-
plete the 3-year examination, yielding 132
eligible datasets (age 60 –90 years, mean
75.4 � 5.1 years, 63 females/69 males) with at
least 3 years of follow-up data. For 80 of these
participants, 4-year follow-up data were
available, with 1 additional conversion to
MCI/AD, yielding 79 eligible 4-year datasets
(age 60 –90 years, mean 75.8 � 5.3 years, 38
females/41 males).

Clinical, biomarker, and cognitive criteria were used to assign partic-
ipants to low-risk groups. The clinically defined group (n � 79) showed
no change in the CDR sum of boxes or MMSE scores for 3 years. The
biomarker-defined group (n � 37) consisted of participants with normal
levels of baseline CSF amyloid-�1–42 based on an established criterion
from the ADNI (i.e., �192 pg/ml; Shaw et al., 2009) who were negative
for apolipoprotein �4 (Corder et al., 1993). CSF was obtained from ap-
proximately half the total ADNI sample. The memory low-risk group
(n � 42) obtained at least 90% of their baseline score on the learning and
30 min recall measures from the Rey Auditory Verbal Learning Test
(RAVLT; Rey, 1964) at the 3-year follow-up examination.

For comparison purposes, we also included a groups of high-risk,
nondemented elderly persons, consisting of participants with a stable
MCI diagnosis for 3 years (n � 213), as well as a group of AD (n � 122)
patients. Years of education were comparable across low-risk groups
(15.7–16.4 years), MCI (15.8 years), and AD (15.0 years) patients.

MRI acquisition and analysis. All scans were from 1.5 T scanners col-
lected across a variety of scanners with protocols individualized for each
scanner as defined at adni.loni.ucla.edu/methods/documents/
mri-protocols/. Rates of volumetric change were calculated using Quarc
(Holland et al., 2009, 2011, 2012). Methodological bias in image regis-
tration can artifactually elevate effect sizes, constituting a concern in
neuroimaging studies (Thompson et al., 2011). Several robust ap-
proaches to reducing or eliminating bias have been developed (Leung et
al., 2012; Reuter et al., 2012). Quarc uses an explicit inverse-consistent
approach (Holland et al., 2011) that essentially eliminates potential bias
by combining forward and reverse image registrations and has been fa-
vorably compared with other approaches (Holland et al., 2012). Briefly,
for each participant, dual 3-D follow-up structural scans were rigid-body
aligned, averaged, and affine aligned to the participant’s baseline. A de-
formation field was calculated from a nonlinear registration (Holland et
al., 2011). The images are heavily blurred (smoothed), making them
almost identical, and a merit or potential function was calculated. This
merit function expresses the intensity difference between the images at

each voxel and depends on the displacement field for the voxel centers of
the image being transformed. The merit function by design will have a
minimum when the displacement field induces a good match between
the images. Having found a displacement field for the heavily blurred
pair of images, the blurring is reduced and the procedure is repeated, thus
iteratively building up a better displacement field. The final displacement
field is added to the image being transformed and the resultant image
nonlinearly registered to the same target and finally traced back through
the displacement field thus calculated to find the net displacement field.
This enables very precise registration, even at small spatial scales with low
boundary contrast. Nonphysical deformations are precluded because, at
each level of blurring, the image undergoing deformation is restricted to
conform to the target. This deformation field was used to align scans at
the subvoxel level. To obtain volume change estimates in a large number
of regions, we used a well validated image segmentation and parcellation
approach (Fischl et al., 2002, 2004).

Statistical analyses. The percentage change in cortical volume over 1
year was calculated, color coded, and projected onto a semi-inflated
template brain. General linear models were used to test vertex-wise
change across the cortical surface, corrected for multiple comparisons
across vertices by a false discovery rate �0.05. Change in volumetric
regions of interest (ROIs) were tested by one-sample t tests and the
p-values adjusted for number of regions by Bonferroni corrections by a
factor of 17 (similar to an uncorrected p � 0.003). The surface plots were
then z-transformed within each group separately to allow inspection of
the areas with higher or lower than average rates of atrophy for each
group of participants. The topographical distribution of change in the
z-maps was also compared with change in groups of 3-year stable MCI
and AD patients.

The default mode network (DMN) was given special attention in the
analyses (Raichle et al., 2001; Buckner et al., 2008; Drzezga et al., 2011).
DMN overlaps substantially with a network of core brain areas involved
in episodic memory and imagination (Buckner and Carroll, 2007;
Schacter et al., 2007), which are affected both in normal aging (Andrews-
Hanna et al., 2007; Addis et al., 2011) and in AD (Walhovd et al., 2010;

Figure 1. Rate of atrophy. Top: Annual rate of atrophy in groups of healthy elderly with low risk for AD. Blue-cyan indicates
volume loss; red-yellow indicates an increase. “3 years healthy” refers to participants who were healthy 3 years after entering the
study (n � 132); “4 years healthy,” participants who were healthy 4 years after entering the study (n � 79); “3 years clinically
stable, ” participants who exhibited no change over 3 years in 2 well validated clinical screening measures, the CDR sum of boxes
and MMSE (n � 79) ”; “APOE neg and A� neg, ” participants who were negative for apolipoprotein �4 and CSF amyloid-�1– 42

alleles (n � 37); and “3 years memory stable, ” participants exhibiting 90% of initial score on 2 measures of memory after 3 years,
AVLT learning and recall (n � 42). Bottom: Results of general linear models testing whether annual change was significantly
different from zero. The results are shown as significance level overlays and thresholded at a false discovery rate �0.05, corrected
for multiple comparisons across vertices. Similar significant changes were seen in the right hemisphere (data not shown).
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Jones et al., 2011). Based on recent normative studies (Laird et al., 2009;
Andrews-Hanna et al., 2010), we selected seven regions within the default
mode or episodic memory/simulation network: the rostral middle fron-
tal, inferior parietal cortex and middle temporal cortex on the lateral side
and the medial orbitofrontal cortex, precuneus, entorhinal cortex and
the hippocampus on the medial side (although the role played by the
hippocampus is debated; Nyberg et al., 2010; Squire et al., 2010). Paired-
sample t tests were used to determine whether the rate of change within

the lateral and medial part of DMN differed
from the rate of whole-brain change.

Finally, because DMN is implicated in epi-
sodic memory, the relationship between DMN
change and the 1-year change in learning and
30-min recall performance from the RAVLT
was tested by the use of hierarchical multiple
regression analyses. Age, sex, education, and
whole-brain atrophy rate were entered as co-
variates, hippocampal change as the first pre-
dictor of interest, with change in learning or
30-min recall as the dependent variables, in
separate models. Whole-brain atrophy rate was
included as a covariate to assess the specificity
of the relationship of regional change with
memory change. In the next steps, the other
medial DMN and the lateral DMN regions
were sequentially entered as predictor variables
to determine whether atrophy rates in these ar-
eas explained additional variance in memory
scores and if they attenuated the relationship
between hippocampal atrophy and memory
change.

Results
Change rates across the groups of nonde-
mented older adults are shown in Figure 1
and Table 1. For the total group of 3-year
healthy participants, significant cortical
reduction (p � 0.05, corrected for multi-
ple comparisons) was seen across most of
the cortex, with a mean rate of annual cor-

tical change of 0.40% across hemispheres. The largest reductions
were observed in temporal areas, followed by prefrontal cortex.
Of the volumetric ROIs, hippocampus (1.01%) and amygdala
(0.99%) declined the most and all regions except caudate de-
clined significantly over 1 year. All parts of the ventricular system
except the fourth ventricle expanded significantly. Significant at-

Figure 2. Pattern of atrophy in low-risk healthy elderly persons. Annual atrophy was standardized for each group, yielding
maps showing areas of more (blue-cyan) versus less (red-yellow) relative atrophy expressed in units of SDs (z-scores). As can be
seen, the pattern of atrophy is distinctly frontotemporal, with some evidence of medial parietal atrophy (precuneus/retrosplenial
cortex) as well. Abeta indicates amyloid-�; APOE, apolipoprotein �4.

Table 1. Annual atrophy in low-risk healthy controls

Healthy 3 years
(n � 132)

Healthy 4 years
(n � 79)

Clinically stable 3 years
(n � 79)

A�/APOE negative
(n � 37)

Memory stable 3 years
(n � 42)

% SD % SD % SD % SD % SD

Volumetric ROIs
Whole-brain �0.44 0.74 �0.45 0.70 �0.38 0.73 �0.35 0.71 �0.43 0.63
Accumbens �0.57 1.23 �0.64 1.32 �0.43 1.10 �0.28 1.34 �0.50 1.03
Amygdala �0.99 1.50 �1.00 1.52 �0.82 1.59 �0.72 1.21 �0.93 1.45
Brainstem �0.36 0.77 �0.36 0.77 �0.30 0.79 �0.37 0.64 �0.29 0.58
Caudate �0.21 1.25 �0.26 1.39 �0.07 1.28 0.08 0.98 �0.19 0.82
Cerebellum GM �0.43 0.83 �0.42 0.83 �0.39 0.86 �0.45 0.85 �0.33 0.83
Cerebellum WM �0.53 0.72 �0.54 0.75 �0.47 0.75 �0.45 0.65 �0.53 0.58
Cerebral GM �0.49 1.04 �0.54 1.02 �0.36 1.01 �0.30 0.81 �0.52 0.94
Cerebral WM �0.49 0.65 �0.49 0.56 �0.45 0.66 �0.42 0.66 �0.48 0.56
Hippocampus �1.06 1.23 �0.99 1.26 �0.93 1.01 �0.97 1.04 �1.05 1.22
Pallidum �0.41 0.72 �0.43 0.67 �0.38 0.73 �0.21 0.68 �0.45 0.54
Putamen �0.37 0.74 �0.40 0.80 �0.30 0.69 �0.17 0.68 �0.34 0.56
Thalamus �0.62 0.84 �0.66 0.88 �0.52 0.81 �0.38 0.70 �0.72 0.71

Ventricular ROIs
Ventricles, total 4.09 4.83 4.57 4.49 3.57 4.34 2.78 3.67 4.34 4.27
Lateral ventricle 4.13 4.88 4.61 4.55 3.62 4.43 2.86 3.66 4.44 4.44
Inferior lateral ventricle 4.21 6.34 4.63 5.90 3.27 5.22 2.24 4.67 3.73 4.92
Third ventricle 2.90 4.66 3.13 3.90 2.37 4.34 2.07 3.26 3.08 4.06
Fourth ventricle 0.49 3.95 0.99 3.99 0.06 3.62 �0.14 4.25 0.85 3.64

Annual percentage change in volume calculated from baseline to 1 year follow-up. Participants are assigned to groups based on various criteria: diagnostic stability �3 years from baseline, 4 years from baseline, no reduction over 3 years
in the CDR sum of boxes (CDR-sb) or MMSE scores, no apolipoprotein �4 (APOE) alleles, and high CSF levels of amyloid-� 1– 42 (A�1– 42, indicating low brain levels of A�) or stability of memory performance over 3 years (at least 90% of
initial score in the AVLT learning and 30 min delayed recall task). Note that the same participants are included in numerous groups (e.g., all are included in the 3 year diagnostic stable group). The volume change was averaged across
hemispheres. Bold characters indicate p � 0.05, corrected (Bonferroni corrected for 17 regions, not including whole brain, uncorrected threshold of p � 0.003).
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rophy was observed in all medial and lateral DMN regions, and
these regions showed significantly higher annual atrophy rates
than the whole-brain rate of 0.44% (medial: 0.70%, t(131) � 4.75,
p � 10�5/lateral: 0.53%, t(131) � 2.10, p � 0.05).

Rates and topographical distribution of atrophy in all low-risk
subgroups were generally comparable to the 3-year healthy
group. Although sample size varied between groups, all low-risk
subgroups showed significant reductions across the brain and
ventricular expansion. Significant decline was seen across most
temporal and frontal cortices. The only part of the cortex that was
consistently not reduced was the area around the central sulcus.
For the volumetric regions, hippocampus and amygdala showed
the largest annual declines across low-risk groups.

The atrophy maps in Figure 1 were z-transformed to illustrate
areas of more versus less relative change for each group (Fig. 2).
Again, the pattern was remarkably stable across the groups.
Higher than average atrophy was seen in medial and lateral parts
of the temporal lobe, medial and lateral orbitofrontal cortex, and
precuneus/retrosplenial cortex. This pattern overlapped well
with DMN. Less than average change was seen around the central
sulcus, the posterior parts of the superior frontal cortex, and
primary visual cortices.

To allow direct comparison with high-risk nondemented el-
derly participants (MCI) and AD patients while suppressing dif-
ferences due to the overall differences in rate of atrophy, similar
maps were generated for 213 stable MCI and 122 stable AD pa-
tients (Fig. 3). The pattern of atrophy in medial and lateral tem-
poral areas was very similar in MCI and AD patients to that seen
in the healthy elderly persons. The main topographical difference
in atrophy pattern between the low-risk elderly and the MCI/AD
patients was that healthy adults showed higher than average at-
rophy in the orbitofrontal cortex and rostral middle/inferior
frontal cortex; atrophy in these regions in AD and MCI patients
was not elevated relative to average atrophy rates across the
cortex.

The hierarchic multiple regression analyses showed that after
controlling for age, sex, education, and whole-brain atrophy, hip-
pocampal atrophy significantly predicted memory change
(learning: standardized � � 0.25, p � 0.01; recall � � 0.28, p �
0.005). Including the other medial DMN regions or the lateral
DMN regions as additional predictors did not significantly in-
crease the amount of explained variance in memory change and
did not attenuate the relationship between hippocampus and
memory.

Discussion
Even in groups of healthy elderly persons at very low risk of AD,
volumetric reductions and ventricular expansion were detectable
over 1 year. This suggests that not all brain changes in aging
reflect incipient AD, but rather that volume reductions are a
general feature of normal aging. The newly available follow-up
data enabled us to test whether previously observed brain changes
over short time windows in aging (Fjell et al., 2009; Murphy et al.,
2010) occur in those with very low AD risk. Although most of the
brain showed significant volume reductions, areas of greatest
change aligned well with the DMN, which has been shown to be
affected both in normal aging (Andrews-Hanna et al., 2007; Ad-
dis et al., 2011) and in AD (Walhovd et al., 2010; Jones et al.,
2011). We have shown previously that whereas healthy elderly are
characterized by elevated frontotemporal cortical changes rela-
tive to other cortical regions, AD patients show elevated atrophy
in the temporal regions, with a lesser degree of relative atrophy in
the prefrontal cortex (Fjell et al., 2009). The present results pro-

vide further support that the temporal pattern of changes char-
acterize elderly who are indeed healthy.

Several studies have demonstrated significant reductions in
brain volumes in healthy elderly in the ADNI sample (Fjell et al.,
2009; Murphy et al., 2010) and in other populations (Raz et al.,
2005; Driscoll et al., 2009). The general problem is that if AD-
related pathology is manifest in the brain years before cognitive
symptoms are detected by clinical screening instruments (Jack et
al., 2010), it is challenging to convincingly show that the brain
changes are not driven by preclinical AD. For example, a person
dying at age 79 will have a 30 – 40% probability of significant AD
neuropathological changes in the brain, but only a 15% likeli-
hood of having being diagnosed with dementia due to AD
(Nelson et al., 2012). Therefore, it has been suggested that the
often observed age-related atrophy may be due to insufficient
screening for neurodegenerative disease (Burgmans et al., 2009).
Driscoll et al. (2009) convincingly argued that the pattern of
change observed in their large study of normal aging did not

Figure 3. Comparison of low-risk aging and MCI/AD. Shown is a comparison of the standard-
ized pattern of atrophy in the group of apolipoprotein �4 (APOE �4)-negative elderly with
normal levels of CSF amyloid-� (Abeta), MCI, and AD. Atrophy maps are standardized within
each group, yielding maps showing areas of more (blue-cyan) versus less (red-yellow) atrophy
for each group. Therefore, atrophy is scaled within group and changes are relative to group
means. Across groups, we see common patterns of standardized change in the lateral and
medial temporal lobe (including the hippocampus, data not shown), and a distinct pattern
characterizing only healthy elderly in the prefrontal cortex, especially the orbitofrontal part.
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resemble that seen in MCI, indicating non-AD-related brain
changes in healthy elderly. The present results show that even in
elderly at very low risk of AD, 1-year brain changes are detectable
across most areas of the brain. Although we cannot be sure that
none of the low-risk participants in the present study will even-
tually develop AD, the likelihood that a large proportion of the
participants in these different subgroups are showing AD-related
brain atrophy is small. Therefore, the brain changes observed
here most likely reflect features of normal, non-AD-related aging.

Medial temporal lobe (MTL) atrophy appears to be common
to normal aging and AD. Even though hippocampus and ento-
rhinal cortex are the areas that best distinguish AD from controls
in terms of rate of atrophy (Fjell et al., 2010), low-risk elderly also
show accelerated changes in these areas. One speculation is that
areas characterized by a high degree of life-long plasticity are also
among those most vulnerable to detrimental effects of normal
and pathological aging. Relationships between MTL changes and
memory have been shown in previous longitudinal studies
(Rodrigue and Raz, 2004; Murphy et al., 2010; Persson et al.,
2012), and the current results demonstrate that such relation-
ships exist even in low-risk elderly. The causal direction of the
relationship cannot be inferred from these correlational results,
because both targeted cognitive interventions (Engvig et al., 2010;
Zatorre et al., 2012) and lifespan mental activity (Valenzuela et
al., 2008) have been shown to affect brain atrophy.

According to a unitary factor framework, mild memory de-
cline in aging exists along a continuum with memory impairment
in AD, and dementia is considered to be an acceleration of pro-
cesses that affect cognition in normal aging (Buckner, 2004). This
fits with the “brain maintenance” hypothesis, in which mainte-
nance of structural integrity is important for high cognitive func-
tion in aging (Nyberg et al., 2012). In contrast, a multiple factor
framework would hold that separate factors affect cognition in
aging, with distinct causes, anatomical targets, and cognitive con-
sequences. A popular view is that whereas MTL atrophy causes
memory problems in AD (Jack et al., 2010), normal aging affects
frontostriatal circuits, leading to reduced executive function and
secondary memory problems (Buckner, 2004). When absolute
rates of changes were ignored, it was the orbitofrontal cortex
rather than the MTL that differed most between healthy elderly
and high-risk nondemented elderly (MCI) and AD patients (Fjell
et al., 2009). Nevertheless, orbitofrontal changes did not correlate
with memory function changes in the present study. Therefore,
although it is likely that a multiple factor framework is mainly
correct, the present results indicate that at the macroscopic level,
AD and healthy aging still share at least one common substrate
for changes in memory performance.

The current results point to a frontotemporal vulnerability in
low-risk elderly and in AD, overlapping with major hubs of the
DMN. It is possible that these changes reflect changes common to
age; however, it is also necessary to consider the possibility of
other shared pathological changes, such as changes related to
cerebrovascular disease (CVD). CVD increases in prevalence
with age, has profound impact on brain structure and cognitive
function (Leritz et al., 2011; Jennings et al., 2012), including hip-
pocampus (Raz et al., 2005) and episodic memory (Gunning-
Dixon and Raz, 2000), and is a risk factor for AD. In a recent
review, Jagust (2013) argued that CVD affects both major neural
systems associated with aging–the prefrontal or executive and the
medial temporal lobe memory system. Nelson et al. (2011)pro-
posed that CVD may be a major pathology reflected in diagnosed
dementia. Therefore, the overlapping pattern of change seen
across low-risk healthy elderly and patients diagnosed with MCI

or AD may reflect influences by factors such as CVD on temporal
and frontal atrophy rates, with additional atrophy in temporal
lobe regions in MCI and AD caused by other pathological
processes. Interestingly, in a recent study, Carmichael et al.
(2012)quantified interregional covariance in cortical atrophy
rates in amnestic MCI patients by the use of a completely data-
driven approach and argued for a pattern of frontal aging super-
imposed on medial temporal atrophy and DMN changes in these
patients.

In conclusion, the present results show that 1-year brain
changes are detectable in healthy elderly at very low risk of AD
and that the pattern of change overlaps closely with the DMN,
with hippocampal changes related to changes in episodic mem-
ory function.
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